
Coding Standard

The HEFSS Team
NASA Langley Research Center

Hampton, Virginia, USA

June 17, 2002

Note: parenthetical numbers refer to line numbers in the sample program
which follows.

Style

• Free format with no character past column 80

• Indentation: begin in first column and recursively indent all subsequent
blocks by two spaces

• Start all comments within body of code in first column [15]

• Use all lowercase characters, however mixed-case may be used in comments
and strings

• Align continuation ampersands within code blocks [49]

• No tab characters

• Name end’s [57]

Comments

• For cryptic variable names, state description using a comment line imme-
diately preceding declaration or on end of the declaration line [35]

• For subroutines, functions, and modules, insert a contiguous comment
block immediately preceding declaration containing a brief overview fol-
lowed by an optional detailed description [15]

1 of 5

Variable Declarations

• Do not use Fortran intrinsic function names

• Avoid multi-line variable declarations

• Declare intent on all dummy arguments [36]

• Declare the kind for all reals, including literal constants, using a kind
definition module

• Declare dimension attribute for all non-scalars [36]

• Line up attributes within variable declaration blocks

• Any scalars used to define extent must be declared prior to use [33]

• Declare a variable name only once in a scope. This includes use module
statements.

Module Headers

• Declare implicit none [8]

• Include a public character parameter containing the CVS Id tag [10]

• Include a private statement and explicitly declare public attributes

Subroutines and Functions

• The first executable line should be continue [41]

• Use the only attribute on all use statements [31]

• Keep use statements local, i.e., not in the module header

• Group all dummy argument declarations first, followed by local variable
declarations

• All subroutines and functions must be contained within a module

• Any pointer passed to a subroutine or function must be allocated by at
least size 1 to avoid null or undefined pointers

2 of 5

Control Constructs

• Name control constructs (e.g., do, if, case) which span a significant num-
ber of lines or form nested code blocks

• No numbered do-loops

• Name loops that contain cycle or exit statements

• Use cycle or exit rather than goto

• Use case statements with case defaults rather than if-constructs wherever
possible

• Use F90-style relational symbols, e.g., >= rather than .ge. [45]

Miscellaneous

• In the interest of efficient execution, consider avoiding:

– Assumed-shape arrays

– Derived types in low-level computationally intensive numerics

– use modules for large segments of data

• Remove unused variables

• Do not use common blocks or includes

Illustrative Example

1 ! A collection of transformations which includes
2 ! stretches, rotations, and shearing. This comment
3 ! block will be associated with the module declaration
4 ! immediately following.
5

6 module transformations
7

8 implicit none
9

10 character (len=*), parameter :: transformations_module_cvs_id = &
11 ’$Id: cs_example.f90,v 1.4 2002/04/12 14:41:22 cvs6mp Exp $’
12

13 contains
14

15 ! Computes a stretching transformation.
16 !
17 ! This stretching is accomplished by moving

3 of 5

18 ! things around and going into a lot of other details
19 ! which would be described here and possibly even
20 ! another "paragraph" following this.
21 !
22 ! This contingous comment block will be associated with the
23 ! subroutine or function declaraion immediately following.
24 ! It is intended to contain an initial section which gives
25 ! a one or two sentence overview followed by one or more
26 ! "paragraphs" which give a more detailed description.
27

28 subroutine stretch (points, x, y, z)
29

30 use kind_defs
31 use someothermodule, only: some_variables
32

33 integer, intent(in) :: points
34

35 ! component to be transformed
36 real(fp), dimension(points), intent(in) :: x, y
37 real(fp), dimension(points), intent(out) :: z ! transformation result
38

39 integer :: i
40

41 continue
42

43 i = 0
44

45 if (x(1) > 0.0_fp) then
46 call positive (points, x, y, z)
47 else
48 do i = 1, points
49 z(i) = x(i)*x(i) + 1.5_fp * (i + x(i))**i &
50 + (y(i) * i) * (x(i)**i + 2.0_fp) &
51 + 2.5_fp * i + 148.2_fp
52 enddo
53 endif
54

55 end subroutine stretch
56

57 end module transformations
58

59 module kind_defs
60

61 implicit none
62

63 character (len=*), parameter :: kind_defs_cvs_id = &

4 of 5

64 ’$Id: cs_example.f90,v 1.4 2002/04/12 14:41:22 cvs6mp Exp $’
65

66 integer, parameter :: hp=4 ! Half precision
67 integer, parameter :: fp=8 ! Full precision
68

69 end module kind_defs

5 of 5

